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We present a computational study of the
formation of jets at strongly driven
hydrodynamically unstable interfaces, and the
interaction of these jets with one another and with
developing spikes and bubbles. This provides a
nonlinear spike-spike and spike-bubble
interaction mechanism that can have a significant
impact on the large-scale characteristics of the
mixing layer. These interactions result in
sensitivity to the initial perturbation spectrum,
including the relative phases of the various
modes, that persists long into the nonlinear phase
of instability evolution.

I. INTRODUCTION

The question of the dependence of Richtmyer-
Meshkov (RM) and Rayleigh-Taylor (RT) growth
on the initial modal spectrum is at the heart of
both astrophysical and ICF applications of
compressible mix. This is particularly true for the
deep nonlinear and transitional regimes, where
linear and weakly nonlinear theories have become
inapplicable but the similarity-based scaling
arguments commonly applied to the turbulent
regime are not yet necessarily valid. The deep
nonlinear and transitional regimes must therefore
bridge the gap between the earlier phases, where
                _________________
aFrom a dissertation to be submitted to the Graduate School,

University of Maryland, by Aaron Miles in partial fulfillment

of the requirements for the Ph.D. Degree in Physics.

initial conditions have a strong and direct
influence on the perturbation growth, and the
turbulent regime characterized by self-similar
growth independent of the initial spectrum.

In this paper, we present a mechanism whereby
the unstable evolution of a strongly driven
perturbed interface can depend critically on
details of the initial mode spectrum. Specifically,
we consider how the evolution of a long-
wavelength mode is affected by a single short-
wavelength component and the dependence of this
effect on the relative phase between the modes.

These two-mode interfaces are driven in the
regime of current experiments on the OMEGA
laser.1 The experiments, described in detail
elsewhere,2 use a 5 kJ 1 ns laser pulse to drive a
Mach 15 blast wave into one end of a cylindrical
target. The target consists of a heavier plastic
pusher/ablator section and a lighter foam payload
in contact along a perturbed interface. Aside from
the initial perturbation, the earlier experiments
differ from those discussed in this work only in
the foam density – now 50 rather than 100 mg/cc
(pre-shock density ratio now 0.035).

As the shock front crosses the interface at 1 ns
and impulsively accelerates it up to about 70
km/s, it deposits vorticity, which drives RM
growth. The interface then begins to decelerate,
and does so for the 40 ns remainder of the
experiment. The post-shock Atwood number
remains nearly constant at A* = 0.7. During the
deceleration phase, the interface is RT unstable.
Shock-deposited vorticity (RM) dominates the
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perturbation growth for the first couple of
nanoseconds, while acceleration-induced growth
(RT) dominates at later times.

II. SIMULATIONS

The 2D radiation-hydrodynamics code CALE.3

is used for the simulations. The relative
importance of several numerical and physical
factors for achieving good agreement between
simulation and experiment were considered in
detail previously,4 and the simulations in this
work are run in accordance with those results. We
note here only that the simulations are run in
Eulerian mode, reflecting boundary conditions
(BC’s) are specified in the transverse direction,
and the transverse resolution is 120 points per
wavelength (ppw) of the lowest-l mode.

We now consider the same single-mode
perturbation studied previously (50 µm
wavelength and 2.5 µm initial amplitude), and
study the effect of a single short wavelength
component on its evolution. The scale of the
secondary mode (mode 10) is one-tenth that of the
primary mode (mode 1), or 5 µm in wavelength
and 0.25 µm in initial amplitude. The relative
phase of mode 10 with respect to mode 1 is either
0 or π/2. The symmetry of the single mode and in-
phase cases allows us to limit the computational
domain to one half of the mode 1 wavelength. In
the out-of-phase case, we include four mode 1
wavelengths. We then technically have modes 4
and 40, but because the ratio of their wavelengths
is an integer, no modes lower than 4 can be
generated via mode coupling.

III. MODEL PREDICTIONS

Because of the strong drive and somewhat large
initial amplitudes (pre-shock a/λ = 0.05 and post-
shock a*/λ ≈ 0.02), the linear approximation is
quickly invalidated. Mode 1 becomes nonlinear
within 1 ns (of a 40 ns experiment) and mode 10
is nonlinear virtually instantaneously. In the two-
mode cases, the bubble merger process proceeds
rapidly. The ten small-scale bubbles per mode 1
wavelength present at 2 ns merge into one by 10
ns.In the similarly short early nonlinear phase,
mode coupling is present but weak, and Haan’s
spectral model5 is valid. Harmonic generation (of
modes 2 and 20) introduces spike-bubble
asymmetry, with spikes growing faster than
bubbles. Modes 1 and 10 couple to generate

modes 9 and 11, which allow for 3rd order
coupling back to mode 1. Ofer et al6 found that
once a mode has reached its saturation amplitude,
it no longer contributes to the growth of longer
wavelength modes. However, they also found that
a short wavelength mode can act as an affective
density gradient at the interface to somewhat
stabilize the primary mode.7 According to their
analysis, the mode 1 linear RT growth rate is
reduced by 10% when (a/λ)10 reaches about 0.3,
or about the time mode 10 reaches its saturation
velocity.

In order to make some prediction of the late-
time dependence on the initial phases, we have
applied the modal model of Ofer et al.6 Our
treatment of phases is more general than in the
original implementation, which effectively
allowed only for cosine modes with phases of
only 0 and π. The resulting model predicts a
negligible effect of mode 10 on the evolution of
mode 1 regardless of the phases. Therefore the
main effect of mode 10 on the evolution of mode
1 should be a reduction of its growth due the
effective density gradient provided by mode 10.

IV. SIMULATION RESULTS

The averaged amplitude histories for the
different phase realizations are shown in Fig. 1
along with the mode 1 prediction of Oron et al’s
buoyancy-drag model.8 In order to facilitate
comparison with the model, the effect of target
decompression has been removed. As expected,
the linear phase lasts no more than about 1 ns.
Mode 10 remains sufficiently small while the
acceleration is large that the introduction of its
amplitude into the buoyancy-drag model as a
stabilizing density gradient results in virtually no
change in the predicted mode 1 growth.

Additional detail can be obtained by
considering the amplitude histories together with
a plot of the spike-bubble amplitude asymmetry
(see Fig. 2). Without the short wavelength
component, the mode 1 amplitudes are as
expected. The amplitudes begin to saturate as the
drive decays away, with the spike amplitude
significantly larger than that of the bubble. The
two-mode-in-phase case begins similarly, but the
bubble growth rate suddenly increases at about 11
ns. Late in time, the spike amplitude is somewhat
reduced relative to the single-mode case (by less
than 2%), while the bubble shows tremendous
growth enhancement (about 65%). In fact the
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bubble amplitude is greater than the spike
amplitude until about 30 ns. The out-of-phase
case strongly differs from both the in-phase and
the single-mode cases. The bubble growth is only
slightly enhanced (by about 1%), but there is
tremendous reduction of the spike growth (by
about 60%). In both of the two-mode cases, the
spike and bubble growth is nearly symmetric.

Figure 1: Spike-bubble averaged amplitudes corrected for
decompression. (a) The bubble-merger-driven inverse cascade
is complete by about 10 ns. (b) Early on, the growth is not
strongly affected by short-λ “noise”. (c) For the two-mode
cases, sudden changes in growth rate occur at intermediate
times. (d) After 20 ns, the phase-correlated (decorrelated)
noise leads to growth enhancement (suppression) relative to
single mode. The dashed lines show the single-mode
saturation values (a/λ = 0.4) for modes 1 (upper) and 10
(lower).

Figure 2: Ratio of spike to bubble amplitudes corrected for
decompression. The single mode (mode 1) spike amplitude is
significantly larger than that of the bubble at late times. Both
two-mode calculations show nearly symmetric spike-bubble
growth. The amplitudes are also nearly symmetric in the mode
10 single mode case (triangles) because of the Atwood number
reduction due to the density gradient at the interface.

Thus mode 10 has little effect on mode 1 during
the linear and early nonlinear phases of the
instability evolution, but has a strong effect during
the deep nonlinear phase when the driving
acceleration has decayed to below 25% of its peak
value. This does not appear to result from any
affective density gradient provided by mode 10 at
the mode 1 interface.

The operative mechanism can be understood by
observing the interface as it evolves (see Fig. 3).
At 2 ns (1 ns after shock refraction – see Fig 3a),
the effect of mode 10 on mode 1 is clearly small.
Mode 1 is just entering the early nonlinear phase
(a/λ = 0.1) while mode 10 has already attained a/λ
= 0.4. By 5 ns the shape of the primary spikes has
been significantly altered by the presence of mode
10. The remaining secondary spikes (bubble
merger is already underway) near the tips of the
primary spikes have acquired a transverse velocity
that is particularly pronounced in the in-phase
case. In the in-phase case, transversely growing
secondary spikes collide with one another at about
8 ns (Fig. 3b), driving premature bubble merger
and producing upstream and downstream-directed
jets. Since the collision direction is nearly
perpendicular to the main flow direction, most of
the collision energy is directed downstream. In the
out-of-phase case, only a grazing collision occurs
because alternating secondary spikes (at the
primary spike tips) still have a significant
upstream velocity component. As a result, half of
these secondary spikes are directed downward and
eventually strike the primary spike stalks at about
11 ns (Fig. 3c). This causes a sudden reduction in
the spike amplitude growth rate and leads to the
large reduction in spike growth relative to the
single-mode case observed at late times. At about
the same time, the downstream-directed jets
produced in the in-phase case strike the inner
surface of the primary bubble tips, thereby
depositing energy that suddenly accelerates the
bubble growth. At later times, KH activity near
the primary spike tips effectively regenerates the
smaller scales lost due to bubble merger. The
process of secondary spike collision and jet
formation can then continue, particularly in the in-
phase case. Each new jet sends more spike
material downstream into the primary bubble
region, so that the coupling between KH and
secondary spike interaction results in greatly
enhanced mixing in the layer.

Between 26 and 30 ns, a large-scale vortex
begins to form in the out-of-phase case. This

(a)

(b)

(c)

(d)

Buoyancy-
drag model
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Figure 3: Density plots at (a) 2 ns, (b) 8 ns, (c) 11 ns, (d) 20 ns,
and (e) 38 ns. Deflection of spikes can result in fast colliding
spikes that drive premature bubble-merger and produce
upwards and downwards-directed jets. Downwards-directed
jets strike the inner surface of bubble tips, thereby depositing
energy that accelerates bubble growth.

signifies that the edges of the computational
domain have begun to influence the interface

evolution all along the transverse direction.  By
this time, however, the spike amplitude in the out-
of-phase case is already greatly reduced relative
to the other cases and has nearly saturated.

At late times, there are large differences in the
interface structure of all three cases (see Fig. 3e).
Thus the large-scale features present during the
late nonlinear instability evolution are strongly
affected by the details of the initial conditions.
Not only the presence of the short-wavelength
mode, but also its phase, has a dramatic impact on
the final state.

V. DISCUSSION

We hypothesize that a short wavelength
secondary component can significantly affect the
evolution of a longer wavelength primary mode
when the aerodynamic drag pressure acting on the
developing spikes is great enough that it not only
determines the spike’s terminal velocity, but also
affects its shape. Considering the instability Mach
numbers present in these simulations and
experiments (Mfoam = 0.15 - 0.20 and Mplastic =
0.25 - 0.40), we can only place an upper bound
of about M > 0.1 on when these effects might
appear. The drag pressure is related to the thermal
(or interface) pressure Pi through the expression

ρs
* vs

2 = γs M
2 Pi, (1)

where M is the instability Mach number, vs is the
spike velocity, and ρs and γs are the density and
adiabatic index of the spike material. When the
Mach number is equal to 0.3 (M2 ≈ 0.1), the drag
pressure is about one-tenth of the thermal
pressure. In our case, the local pressure increase
in secondary bubble regions results in partially
redirecting the growth of secondary spikes into
the transverse direction. This is reminiscent of the
pinching effect noted by Li to occur during bubble
merger, which can result in bubble-growth
suppression due to an affective reduction in
Atwood number.9 But in our in-phase case, the
head-on collision of two fast-moving secondary
spikes produces an even faster downstream-
directed jet. When it strikes the inner surface of
the primary bubble, its ram pressure in the bubble
frame is 0.45 Mbar – roughly equal to the 0.50
Mbar thermal pressure of the plastic at the bubble
position. It is therefore able to penetrate a
significant distance into the plastic, thereby
enhancing the bubble growth. Although there is

(d)
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(c)
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out of phase

(a)
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no head-on collision of secondary spikes in the
out-of-phase case, the redirected spikes are still
sufficiently energetic to essentially punch through
the primary spike stalks.

Whether or not redirected secondary spikes
collide with each other or with primary spike
stalks depends on the degree of phase coherence.
Interfaces consisting of periodic arrays of spikes
are more likely to evolve into colliding spikes.
Since real systems are very unlikely to exhibit
high degrees of phase coherence, the perfect
symmetry enforced by the in-phase calculation is
arguably rather unphysical. There are, however,
important implications for simulations. In
multimode RT and RM calculations, the domain
is often limited to a subsection or wedge of the
full system with reflecting boundary conditions.
In order to avoid unphysical effects at the
boundaries, the initial perturbation spectrum
sometimes includes only modes whose
wavelengths are integer fractions of the full
domain. The “random phase” assignment then
amounts simply to a random assignment of plus or
minus one to the amplitude of each mode. Since
such spectra are actually characterized by a high
degree of phase coherence, these simulations, if
strongly driven, could significantly over-predict
the growth of the mixing layer.

The interaction of redirected spikes represents a
coupling between transverse and parallel motions
and a complicated nonlinear transfer of energy
from spikes to other spikes (driving premature
bubble merger) and to bubbles (contributing to
increased spike-bubble symmetry). Coupling of
this process with the KH instability results in
additional coupling between and generation of
scales and greatly enhanced mixing in the layer.
Since turbulence requires the development of a
broad inertial range of scales, this will likely
decrease the time to transition.

The result that large-scale features present
during the late nonlinear instability evolution are
strongly affected by details of the initial
conditions must be reconciled with the
expectation that, at some point near or after
transition, the mixing layer will begin to grow at a
rate that is independent of the initial spectrum. If
this is correct, then the memory of the initial
conditions must somehow be erased. The
observed dependence would in that case be a
transient phenomenon that would eventually
disappear as the bubble size distribution settles
into a scale invariant form. However, this
argument requires the continual emergence of

larger scales and depends on the existence of a
sustained drive. In our case, the combination of a
decaying drive and continuing decompression
means that transients can effectively be “frozen
in” to the flow and thereby persist to late times.

Finally, we note that we expect the jet effect to
be significantly smaller, if not altogether absent,
in 3D. Consequently, 3D calculations are planned
to study the effect of initial conditions on
determining the time to transition and the
properties of the subsequent turbulent flow.
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